

Farming with robots 2050

Prof Simon Blackmore

Head of Engineering

simon.blackmore@harper-adams.ac.uk

www.harper-adams.ac.uk

Director of the National Centre for Precision Farming

NCPF.harper-adams.ac.uk

Project manager of FutureFarm

www.FutureFarm.eu

Farming in 2050

- Identify trends in the past that are true today
- Identify weaknesses in current system
 - Is big always good? Highest yield gives highest profit? ...
- Assumptions
 - Desire to have less environmental impact
 - Tighter legislation from EU and UK
 - Energy prices increase
 - More volatile weather due to climate change
 - More competition on world food prices
- UK agriculture must become more flexible and efficient
 - Smarter farming systems supporting smarter farmers

Current farming system

- Developed for maximum crop production after the war
 - Industrial production line
- Farmers in 2014 face different pressures
 - Changing world prices, Clean Water Directive,
 volatile weather conditions, Single Payment
 Scheme,
 - Farmers are moving towards "Flexible Manufacturing" techniques

The Royal Veterinary and Agricultural University

Intra-row Weeding with a Cycloid Hoe

Denmark, May 2006

Current system: Size

- Mechanisation getting bigger all the time
 - Due to driver costs
 - Doubling work rates keeps costs down
 - Reaching maximum size
 - Combines are now at maximum size that can fit inside a railway tunnel for transport
 - Good for large fields
 - Small working window needs a bigger machine but the bigger the machine the smaller the working window.
 - Self fulfilling prophecy
 - Horsepower does not help when weight is the problem
 - We cannot change the weather but we can change the tractor

Current system: Compaction

- Up to 90% of the energy going in to cultivation is there to repair the damage caused by machines
 - If we do not damage the soil in the first place,
 we do not need to repair it
 - "Recreational tillage", "Do not treat soil like dirt"
 - "The best thing to do with soil is leave it alone"
 - The best soil structure can usually be found in forests
 - Natural soil flora and fauna condition the soil structure

Current system: Trafficking

- Up to 96% of the field compacted by tyres in "random traffic" systems
- Spatial control of machinery can save:
 - 10-15% time, fuel and inputs
 - Complete optimised route planning
 - Controlled Traffic Farming
- Expand the working window
 - Lighter low ground pressure vehicles that can work in wet weather conditions and not damage the soil

Current system: Design

- Tractors designed to pull large horizontal draught loads
 - Big wheels at back for larger contact patch
 - Cleats on tyres to help dig through mud
 - Weights on front for weight transfer
 - Every 1 kN draught force needs 1 kN vertical force
 - Weight causes soil compaction
- Cab for driver
- Many farms have smaller numbers of large tractors
 - Many operations are now over powered and waste energy as the tractor is not matched to the implement

New opportunities: ICT

- Wireless communications
 - (WiFi, 3G, 4G, Zigbee, 24GHz)
- CPU doubling every 18 months (Moore's Law)
- Non contact solid state sensors
 - Phenotyping outdoor crops
- New sensors and techniques for agriculture
 - (NDVI, NIR, EMI, Red edge inflection, ground penetrating radar, terahertz,
 Chlorophyll florescence, Light curtain, laser scanning,)
- Automation leading to robotics
 - SAFAR (Software Architecture for Agricultural Robots)

New Opportunities: Workforce

- "Computers and robots will take people's jobs"
 - "I think there is a world market for maybe five computers" Attrib. T.J.Watson (CEO IBM 1943)
 - 1,966,514,816 computers connected to the internet in 2010
- While agricultural robots will replace semi-skilled drivers, an equal number of highly skilled agricultural robot engineers will be needed

Robotic agriculture

- Keeping seeds, sprays, fertiliser etc. the same
- Remove machine constraints
- Focus on plant needs
- Farm Management Information System
- Four stages
 - Crop establishment
 - Crop scouting
 - Crop care
 - Selective harvesting

Crop establishment

- Micro tillage
 - Why cultivate the whole topsoil?
- Non draught force
 - Use vertical or rotary methods
- Permanent planting positions
 - Same place each year
- Seeding depth to moisture
 - Improve germination rates

- Working with agronomists by giving near-real-time data over the whole farm
- UGVs (Unmanned Ground Vehicle)
 - Phenotyping robots
 - Crop trials to evaluate new genotypes
 - Scouting robots
 - Targeted agronomic measurements
- UAVS (Unmanned Aerial Vehicle NCPF seminar 30th Jan)
 - Rapid assessment technique
 - High resolution imagery
 - Visible: Crop cover, growth rates, flooding extent, late emergence, weed patches, rabbit damage, nutrient imbalance
 - Non-visible: NDVI, Thermal, multispectral
 - Sensor limited by weight and power

Selective harvesting

- Up to 60% of harvested crop is not of saleable quality
- Only harvest that part of the crop which has 100% saleable characteristics
 - Phased harvesting
- Pre harvest quality and quantity assessment
 - Grading / packing / sorting at the point of harvest
 - Add value to products on-farm
 - Grade for quality
 - Size, sweetness, ripeness, shelf life, protein etc
 - Minimise off farm grading and sorting
- Extend traceability from farm gate back to individual treatments (meta data)

FMIS / RMIS

- University Government
- Real-time management information (and knowing what to do with it) is the key to successful farming
- FMIS have been developed to deal with:
 - Changing policies and guidelines
 - Optimising inputs and resources
 - Embodying personal values and attitudes towards risk
 - Identification of personal strategies and practices so they can be fully supported

Large tractors

- Some operations will still need large manned machines
 - Harvesting large crops
 - 40 t/ha potatoes
 - 70 t/ha sugar beet
- Agricultural machines will be a lot smarter than they are now
- Implement controls the tractor through the ISOBUS

Big data

- Concept just starting to be applied to agriculture
- Data previously not used can be stored and analysed
 - Yield maps over many years
 - Market prices and macro trends
 - CAN bus data from modern tractors
- Manufacturers analyse real-time data to advise on potential problems and understand usage

Conclusions

- Is this the future for 2050 or now?
- All of these concepts have been developed and initially researched
- Not many of them are commercially available through "lack of demand"
- How long will it take for UK farmers to take advantage of these new opportunities?

MicroDot spraying

- Machine vision recognises the leaves of the plant in real time and records the position and speed
- MicroDot sprayer puts chemical only on the leaf of the plant saving 99.99% by volume

Laser weeding

- Machine vision recognises the growing point of the weed
- Laser kills the weed by heating the growing point
- Saving 100% herbicide

- Harper Adams University is now building a real-time robot to laser and microdot weeds
- Funded by a major agrochemical company 2014-2017

Dionysus robot

- Crop scouting robot for vineyards
- Build by Harper Adams MEng (2013) students for the University of Athens
- Software Architecture for Agricultural Robots
- Thermal camera for irrigation status
- Multispectral camera for nutrient status
- LIDAR for canopy extent and density

Robotti

RoboFarm

Harper Adams
University

- Integrate FMIS and robotics
- ICT-AGRI ERA-NET project 2012-2014

Greece, Turkey, Italy and UK

- Usability of Environmentally sound and Reliable techniques in Precision Agriculture
 - How to make PA and robotics easier to use
- Build, test and demonstrate;
 - Orchard sensing robot
 - Vineyard sensing robot
 - Robot Management Information System
- ICT-AGRI (ERA-NET) European network
- Israel, Germany, Turkey, Greece, Italy, UK, Denmark
- €1m (2012-2016)